TOPICS IN MATHEMATICS
PROBLEM SET 3 SOLUTIONS

PAUL L. BAILEY

Problem 1. Let m,n € Z be nonzero and suppose that there exist integers x,y € Z
such that ma + ny = 1. Show that ged(m,n) = 1.

Solution. We know that if ged(m,n) = d, then there exist x,y € Z such that
ma + ny = d. However, the converse is not true in general. For example, let m = 2
and n = 3. Then it is the case that

5m + 2n = 16,

but it is not the case that ged(m,n) is 16.

However, if ma 4+ ny = 1, then it follows that ged(m,n) = 1, as we now demon-
strate.

Suppose that mz+ny = 1 for some z,y € Z. Let d = ged(m, n). Then d divides
m and d divides n, so m = da and n = db for some a,b € Z. Then dax + dby = 1,
do d divides 1. The only positive integer which divides 1 is 1; thus d = 1. O

Problem 2. Let f(z) = 2 + 462 + 54. Show that f is irreducible over Q, but is
reducible over Z7.

Solution. Recall Eisenstein’s criterion, which say that f is a polynomial with inte-
ger coeflicients, and p is a prime integer satisfying:

(a) the leading coefficient of f is not divisible by p,

(b) every other coefficient of f is divisible by p,

(c) the constant coefficient of f is not divisible by p?,
then f is irreducible other Z, and consequently is irreducible other Q by Gauss’
lemma.

Note 46 = 2-23 and 54 = 2- 32, so f satisfies the hypothesis of Eisenstein’s
criterion with p = 2. Thus f is irreducible over Q.

Let f be the residue of f modulo 17. We have 46 = 12 = —5 (mod 17) and
54 =3 = —14 (mod 17). Thus

f(r)=2® -5z —14 = (z —7)(z + 2).
Thus f is reducible. O
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Problem 3. Let 5 = VV2 + /3.

(a) Find the minimum polynomial of § over Q.
(b) Find the minimum polynomial of 3 over Q[/6].

Solution. Compute 3% = v/2+/3, so 8 = 54+21/6, whence (3% —5)? = 24. Writing
this in standard form, we obtain
B2 —108°+1=0.

Let f(x) = 2'2 — 102® + 1; then f(3) = 0. Thus f is a monic polynomial which
annihilates §; we wish to show that f is irreducible over Q. Since we know that the
minimum polynomial of 3 is divisible by f, it suffices to show that the degree of
the minimum polynomial of 5 is 12. We also know that the degree of the minimum
polynomial is equal to the degree of the corresponding primitive extension.

We show that [Q[F] : Q] = 12 by using the product of degrees formula.

The minimum polynomial of /2 over Q is 22 — 2, so [Q[v2] : Q] = 2. Tt is
impossible to solve the equation V3 = a + b2 for rational numbers a and b, so
V3¢ Qv2].

The minimum polynomial of v/3 over Q is 22 — 3; but since v/3 ¢ Q[v2] and
2?2 — 3 is quadratic, it cannot possibly factor over Q[v/2]. Thus 22 — 3 is irreducible
over Q[v/3], which shows that

[Qv2,v3]: Q] = [Q[V2,v3] : Q[V2][Q[v2] : Q] =2-2 =4.

Let a = v/2++/3; we show that Q[a] = Q[v/2,V/3]. It is clear that o € Q[v/2, V3],
so we show that v/2,v/3 € Qla].

Set h(x) = 2* — 1022 + 1. Then h is a polynomial which annihilates «a, so « is
algebraic over Q, so Q[a] is a field. The inverse of « is also in Q[a], and may be
computed as

R €k € NN SV
V3+v2 o 3-2

—1
Thus OH—T& = /3 € Qla], and consequently a — v/3 = /2 € Q[a]. Conclude

that Q[a] = Q[v/2, v/3]. Incidently, this also shows that A is irreducible over Q, and
that [Q[a] : Q] = 4.

Finally, it is clear that 3 ¢ Q[a]. However, 23 — « is a polynomial over Q[a]
which annihilates 8. This cubic polynomial is irreducible unless it has a root in
Qla). But the roots are 3, fw, and Bw?, where w = e2™/3_ The latter two are
nonreal, and so are certainly not in the real field Q[a]. Thus 2 — « is the minimum
polynomial of 5 over Q[a]. Thus

[Q[8] : Q] = [Q[B] : Qla]][Q[a] : Q] =3 -4 = 12.
This details why f(z) = z'? — 102° + 1 must be irreducible over Q.
Looking back at our initial computation, we see that 3% — 5 — 2v/6 = 0. Thus
let g € Q[v/6] be given as g(x) = 2% — (5 + 2v/6). Since [Q[v/6] : Q] = 2, we must
have [Q[] : Q[v/6] = 12/2 = 6. Thus g is irreducible. O




Problem 4. Let 3 = €27/16,
(a) Find the minimum polynomial of § over Q.
(b) Find the minimum polynomial of 8 over Q[i].
(c) Find the minimum polynomial of 3 over Q[v/2].

Solution. Since 3% = e™ = —1, we see that (3 is a root of f(z) = 2% + 1. We wish
to show that f is irreducible, again by computing degrees.
Now [ = cis(2mi/16) = cos(27i/16) + isin(27i/16); use the half angle formula

to compute
V2-V2 V242

b= 2
Note that 82 = ? +i§7 and 3* = i. Then 4,v/2,v/2 4+ v2 € Q[4].
Drawing on previous experience, we can see that [Q[v2] : Q] = 2, but that

V2++2 ¢ Q[v2]. Thus [Q[v2++2]: Q] = 4. Since V2 + V2 € R, the field it
generates over Q is also contained in R, and in particular, does not contain i. Thus
[Q[i, v/2 + v/2] : Q] = 8, which proves that f is irreducible.

The minimum polynomial of 3 over Q[i] must be of degree 4, and 3* = i. Thus,
x* — i is the minimum polynomial of 3 over Q[i].

The minimum polynomial of 3 over Q[v/2] also is of degree 4; note that 3 = 3!
is the complex conjugate of 3, so

B+ =2R(8) =2 - V2.

Squaring gives 82+ 2+ 72 =2 -2, 50 f*+ V282 +1 =0. Thus z* + 222 + 1
is the minimum polynomial of 8 over v/2. (I

Problem 5. Let f(x) = 2'2 — 1, and let E C C be the splitting field of f over Q.
Write E as a multiple extension, and find [E : Q.

Solution. Let /3
: 3 1
_ p2mifl2 _ vV -
p=e 2 T3

Since ( is a primitive twelfth root of unity, all the other roots of f are powers of 3,
so B =Q[f] = Q[v3,i]. Thus [E : Q] = 4.

Let’s find the minimum polynomial of § over Q, by way of factoring f into
irreducible polynomials:

22 —1= (2% -1)(2® 4+ 1)
=(* - 1)(2® +1)(2* +1)(2* =22 +1) (sum of cubes formula)
=(z-D)E+r+ D+ -+ D@2+ =22 +1).

The last factor is the only one whose degree is at least four; thus it must be the
minimum polynomial of 3 over Q, and is irreducible. We identify the powers of 3
which are roots of each of these polynomials:

e 1, the primitive first root of unity, is a root of z — 1;

e —1, the primitive second root of unity, is a root of = + 1;

e (3%, 3%, the primitive cube roots of unity, are roots of z2 + z + 1;

e (32,30 the primitive sixth roots of unity, are roots of 22 — x + 1;

e +/3% = 44, the primitive fourth roots of unity, are roots of z2 + 1;

e 3,3% 37,3, the primitive twelfth roots of unity, are roots of 2* — 22 + 1.
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Problem 6. Let K/E and E/F be algebraic extensions. Show that K/F is an
algebraic extension.

Solution. Recall that an element of K is algebraic over F' if it is a root of a polyno-
mial with coefficients in F, and that K/F is an algebraic extension if every element
of K is algebraic over F.

Let 8 € K; we wish to show that g is algebraic over F'. Since K/FE is an algebraic
extension, § is algebraic over E, so there exists g € E[z] such that g(8) = 0. Since
g € Elx], there exist ayg,...,a, € E such that

g(z) = Z ozt

=0
Since E/F is an algebraic extension, «; is algebraic over F for i =0,...,n.

Let L = Flag,...,ay]. Then f € L[z] and f(8) = 0, so 8 is algebraic over L,
and L[3]/L is a finite extension whose degree is less than or equal to n (it is equal
to n if f is irreducible over L).

Also, L is a multiple extension of F', and therefore is finite. Now

(L8] : F] = [L[B] : L)L : F] < oo,

so L[B]/F is a finite extension, and therefore is an algebraic extension. Thus (3 is
algebraic over F'. O
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