
TOPICS IN MATHEMATICS
PROBLEM SET 3 SOLUTIONS

PAUL L. BAILEY

Problem 1. Let m,n ∈ Z be nonzero and suppose that there exist integers x, y ∈ Z
such that mx + ny = 1. Show that gcd(m,n) = 1.

Solution. We know that if gcd(m,n) = d, then there exist x, y ∈ Z such that
mx+ny = d. However, the converse is not true in general. For example, let m = 2
and n = 3. Then it is the case that

5m + 2n = 16,

but it is not the case that gcd(m,n) is 16.
However, if mx + ny = 1, then it follows that gcd(m,n) = 1, as we now demon-

strate.
Suppose that mx+ny = 1 for some x, y ∈ Z. Let d = gcd(m,n). Then d divides

m and d divides n, so m = da and n = db for some a, b ∈ Z. Then dax + dby = 1,
do d divides 1. The only positive integer which divides 1 is 1; thus d = 1. �

Problem 2. Let f(x) = x2 + 46x + 54. Show that f is irreducible over Q, but is
reducible over Z17.

Solution. Recall Eisenstein’s criterion, which say that f is a polynomial with inte-
ger coefficients, and p is a prime integer satisfying:

(a) the leading coefficient of f is not divisible by p,
(b) every other coefficient of f is divisible by p,
(c) the constant coefficient of f is not divisible by p2,

then f is irreducible other Z, and consequently is irreducible other Q by Gauss’
lemma.

Note 46 = 2 · 23 and 54 = 2 · 33, so f satisfies the hypothesis of Eisenstein’s
criterion with p = 2. Thus f is irreducible over Q.

Let f be the residue of f modulo 17. We have 46 ≡ 12 ≡ −5 (mod 17) and
54 ≡ 3 ≡ −14 (mod 17). Thus

f(x) = x2 − 5x− 14 = (x− 7)(x + 2).

Thus f is reducible. �
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Problem 3. Let β = 3
√√

2 +
√

3.
(a) Find the minimum polynomial of β over Q.
(b) Find the minimum polynomial of β over Q[

√
6].

Solution. Compute β3 =
√

2+
√

3, so β6 = 5+2
√

6, whence (β6−5)2 = 24. Writing
this in standard form, we obtain

β12− 10β6 + 1 = 0.

Let f(x) = x12 − 10x6 + 1; then f(β) = 0. Thus f is a monic polynomial which
annihilates β; we wish to show that f is irreducible over Q. Since we know that the
minimum polynomial of β is divisible by f , it suffices to show that the degree of
the minimum polynomial of β is 12. We also know that the degree of the minimum
polynomial is equal to the degree of the corresponding primitive extension.

We show that [Q[β] : Q] = 12 by using the product of degrees formula.
The minimum polynomial of

√
2 over Q is x2 − 2, so [Q[

√
2] : Q] = 2. It is

impossible to solve the equation
√

3 = a + b
√

2 for rational numbers a and b, so√
3 /∈ Q[

√
2].

The minimum polynomial of
√

3 over Q is x2 − 3; but since
√

3 /∈ Q[
√

2] and
x2− 3 is quadratic, it cannot possibly factor over Q[

√
2]. Thus x2− 3 is irreducible

over Q[
√

3], which shows that

[Q[
√

2,
√

3] : Q] = [Q[
√

2,
√

3] : Q[
√

2]][Q[
√

2] : Q] = 2 · 2 = 4.

Let α =
√

2+
√

3; we show that Q[α] = Q[
√

2,
√

3]. It is clear that α ∈ Q[
√

2,
√

3],
so we show that

√
2,
√

3 ∈ Q[α].
Set h(x) = x4 − 10x2 + 1. Then h is a polynomial which annihilates α, so α is

algebraic over Q, so Q[α] is a field. The inverse of α is also in Q[α], and may be
computed as

α−1 =
1√

3 +
√

2
=
√

3−
√

2
3− 2

=
√

3−
√

2.

Thus
α + α−1

2
=
√

3 ∈ Q[α], and consequently α −
√

3 =
√

2 ∈ Q[α]. Conclude

that Q[α] = Q[
√

2,
√

3]. Incidently, this also shows that h is irreducible over Q, and
that [Q[α] : Q] = 4.

Finally, it is clear that β /∈ Q[α]. However, x3 − α is a polynomial over Q[α]
which annihilates β. This cubic polynomial is irreducible unless it has a root in
Q[α]. But the roots are β, βω, and βω2, where ω = e2πi/3. The latter two are
nonreal, and so are certainly not in the real field Q[α]. Thus x3−α is the minimum
polynomial of β over Q[α]. Thus

[Q[β] : Q] = [Q[β] : Q[α]][Q[α] : Q] = 3 · 4 = 12.

This details why f(x) = x12 − 10x6 + 1 must be irreducible over Q.
Looking back at our initial computation, we see that β6 − 5 − 2

√
6 = 0. Thus

let g ∈ Q[
√

6] be given as g(x) = x6 − (5 + 2
√

6). Since [Q[
√

6] : Q] = 2, we must
have [Q[β] : Q[

√
6] = 12/2 = 6. Thus g is irreducible. �
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Problem 4. Let β = e2π/16.
(a) Find the minimum polynomial of β over Q.
(b) Find the minimum polynomial of β over Q[i].
(c) Find the minimum polynomial of β over Q[

√
2].

Solution. Since β8 = eπi = −1, we see that β is a root of f(x) = x8 + 1. We wish
to show that f is irreducible, again by computing degrees.

Now β = cis(2πi/16) = cos(2πi/16) + i sin(2πi/16); use the half angle formula
to compute

β =

√
2−

√
2

2
+ i

√
2 +

√
2

2
.

Note that β2 =
√

2
2 + i

√
2

2 , and β4 = i. Then i,
√

2,
√

2 +
√

2 ∈ Q[β].
Drawing on previous experience, we can see that [Q[

√
2] : Q] = 2, but that√

2 +
√

2 /∈ Q[
√

2]. Thus [Q[
√

2 +
√

2] : Q] = 4. Since
√

2 +
√

2 ∈ R, the field it
generates over Q is also contained in R, and in particular, does not contain i. Thus
[Q[i,

√
2 +

√
2] : Q] = 8, which proves that f is irreducible.

The minimum polynomial of β over Q[i] must be of degree 4, and β4 = i. Thus,
x4 − i is the minimum polynomial of β over Q[i].

The minimum polynomial of β over Q[
√

2] also is of degree 4; note that β = β−1

is the complex conjugate of β, so

β + β−1 = 2<(β) =
√

2−
√

2.

Squaring gives β2 + 2 + β−2 = 2−
√

2, so β4 +
√

2β2 + 1 = 0. Thus x4 +
√

2x2 + 1
is the minimum polynomial of β over

√
2. �

Problem 5. Let f(x) = x12 − 1, and let E ⊂ C be the splitting field of f over Q.
Write E as a multiple extension, and find [E : Q].

Solution. Let

β = e2πi/12 =
√

3
2

+ i
1
2
.

Since β is a primitive twelfth root of unity, all the other roots of f are powers of β,
so E = Q[β] = Q[

√
3, i]. Thus [E : Q] = 4.

Let’s find the minimum polynomial of β over Q, by way of factoring f into
irreducible polynomials:

x12 − 1 = (x6 − 1)(x6 + 1)

= (x3 − 1)(x3 + 1)(x2 + 1)(x4 − x2 + 1) (sum of cubes formula)

= (x− 1)(x2 + x + 1)(x + 1)(x2 − x + 1)(x2 + 1)(x4 − x2 + 1).

The last factor is the only one whose degree is at least four; thus it must be the
minimum polynomial of β over Q, and is irreducible. We identify the powers of β
which are roots of each of these polynomials:

• 1, the primitive first root of unity, is a root of x− 1;
• −1, the primitive second root of unity, is a root of x + 1;
• β4, β8, the primitive cube roots of unity, are roots of x2 + x + 1;
• β2, β10, the primitive sixth roots of unity, are roots of x2 − x + 1;
• ±β3 = ±i, the primitive fourth roots of unity, are roots of x2 + 1;
• β, β5, β7, β11, the primitive twelfth roots of unity, are roots of x4 − x2 + 1.
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Problem 6. Let K/E and E/F be algebraic extensions. Show that K/F is an
algebraic extension.

Solution. Recall that an element of K is algebraic over F if it is a root of a polyno-
mial with coefficients in F , and that K/F is an algebraic extension if every element
of K is algebraic over F .

Let β ∈ K; we wish to show that β is algebraic over F . Since K/E is an algebraic
extension, β is algebraic over E, so there exists g ∈ E[x] such that g(β) = 0. Since
g ∈ E[x], there exist α0, . . . , αn ∈ E such that

g(x) =
n∑

i=0

αix
i.

Since E/F is an algebraic extension, αi is algebraic over F for i = 0, . . . , n.
Let L = F [α0, . . . , αn]. Then f ∈ L[x] and f(β) = 0, so β is algebraic over L,

and L[β]/L is a finite extension whose degree is less than or equal to n (it is equal
to n if f is irreducible over L).

Also, L is a multiple extension of F , and therefore is finite. Now

[L[β] : F ] = [L[β] : L][L : F ] < ∞,

so L[β]/F is a finite extension, and therefore is an algebraic extension. Thus β is
algebraic over F . �
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